
Basic Embedded Host Using the SL811HS

Introduction
The SL811HS is a full-featured USB embedded host control-
ler. It utilizes a standard address/data bus typical of most 16-
and 32-bit embedded processors as well as some 8-bit micro-
controllers. This application note addresses the usage of the
SL811HS in an embedded USB host application.

System Interface
The SL811HS incorporates an industry-standard address/da-
ta bus. The requirements of the embedded processor signals
are laid out in the following list.
• Active LOW CHIP SELECT signal
• Active LOW READ signal
• Active LOW WRITE signal
• Active HIGH INTERRUPT signal
• Address bus or GPIO
• Data bus, at least 8 bits wide
• GPIO to drive RESET and USB bus power enable

See the application note “Interfacing an External Processor
to the SL811HS/S” for more details on host circuitry configu-
ration. This application note provides complete details and
examples of the signaling interface to the SL811HS. Most mi-
crocontrollers will be able to interface to the SL811HS with
little or no glue logic.

Programming Interface
The SL811HS uses a memory mapped interface with an 8-bit
address range. The SL811HS supports both a host and pe-
ripheral interface, however only the host registers are de-
scribed in this document. The first 16 addresses (00h-0Fh)
are filled with 20 registers used to control the USB host SIE.
The addresses ranging from 10h-FFh are used as user as-
signable USB FIFO buffers. Figure 1 shows the SL811HS
memory map.

The 20 host control registers are used to enable transactions,
interrupts, and report status. Table 1 is a summary of the
SL811HS register set. The table is followed by a brief descrip-
tion of each register

USB-A/B Host Control (0x00, 0x08, R/W) – This register is
used to provide control over basic host transactions. For ex-
ample, the register enables USB transactions, sets the trans-
action direction, and controls the data toggle.
USB-A/B Base Address (0x01, 0x09, R/W) – This register
acts as a memory pointer in the range of 10h-FFh. Data that
is sent to a USB peripheral is gathered from this internal
memory location and sent over the USB. Data reported from
a USB peripheral is put at the memory location pointed to by
this register.
USB-A/B Base Length (0x02, 0x0A, R/W) – The base length
is used to determine the maximum length of a transaction.
When the SL811HS sends data to a USB peripheral this reg-
ister determines the length of the data in the packet. When
the USB peripheral reports data back to the host this register
determines the maximum data length that will be accepted.
USB-A/B PID/Endpoint (0x03, 0x0B, W) – This register con-
tains the host PID (i.e., SETUP, IN, OUT) and the target end-
point number.
USB-A/B Status (0x03, 0x0B, R) – This register contains the
status of the last performed USB transaction. The status in-
cludes the received PID (ACK, NAK, and STALL), data tog-
gle, and any error condition.
USB-A/B Address (0x04, 0x0C, W) – This register contains
the USB peripheral device address

10h - FFh

00h - 0Fh Control
Registers

USB
FIFO

memory

Figure 1. SL811HS Memory Map

Table 1. SL811HS Register Set Summary

Addr. Write Function Read Function
0x00 USB-A Control USB-A Control
0x01 USB-A Address USB-A Address
0x02 USB-A Length USB-A Length
0x03 USB-A PID/EP USB-A Status
0x04 USB-A Address USB-A Count
0x05 Ctrl1 Ctrl1
0x06 Int. Enable Int. Enable
0x08 USB-B Control USB-B Control
0x09 USB-B Address USB-B Address
0x0A USB-B Length USB-B Length
0x0B USB-B PID/EP USB-B Status
0x0C USB-B Address USB-B Count
0x0D Int. Status Int. Status
0x0E SOF Low HW Revision
0x0F SOF High/Ctrl2 SOF High/Ctrl2
Cypress Semiconductor Corporation • 3901 North First Street • San Jose, CA 95134 • 408-943-2600
December 4, 2002

Basic Embedded Host Using the SL811HS
USB-A/B Transfer Count (0x04, 0x0C, R) – This register
contains the residual transfer count after a USB transaction
has taken place. In either transfer direction this register value
represents the difference between the value written to the
Base Length register and the actual number of bytes written
from/read into the SL811HS internal memory. If the peripheral
tries to send too large of a packet for the SL811HS to handle,
the error will be noted in the Status register.
Control 1 (0x05, R/W) – This register enables SOF genera-
tion, resets the SIE, allows software to set the USB data line
states, sets the USB bus speed, and suspends the SL811HS.
The ability to set the USB data lines states is particularly use-
ful for signaling a USB bus reset.
Interrupt Enable (0x06, R/W) – This register allows software
to enable an interrupt signal (INTRQ HIGH) on certain events.
These events include transaction completion, SOF, device in-
sertion/removal, and resume signaling detection.
Interrupt Status (0x0D, R/W) – This register is read by the
external processor upon an interrupt event to find which event
caused the interrupt. The events reported in this register cor-
respond to the events enabled in the Interrupt Enable register.
The interrupt is deasserted by writing a “1” to any asserted
interrupt bit.
SOF Counter Low (0x0E, W) – Sets the low byte of the timer
that tracks SOF timing. This register should be written with
E0h after reset.
Hardware Revision (0x0E, R) – This register allows device
firmware to read the current silicon revision. See the SL81HS
data sheet for the most current valid values.
SOF Counter High/Control 2 (0x0F, R/W) – Sets the high
byte of the timer that tracks SOF timing, allows software to
swap D±, and selects host or peripheral modes. This register
should be written with the value AEh after reset to enable host
mode and proper SOF timing. The SOF Counter High/Low
registers must be initialized before enabling SOF generation.
Two transaction engines, USB-A and USB-B, are provided so
that one transaction can be set up while the other is taking
place. The transaction engines are symmetric, so it does not
matter which one is used and device software is not required
to interact with both engines. In fact some simpler applica-
tions, such as using a mouse and keyboard on a set top box,
would typically only use one engine because throughput re-
quirements for these devices are minuscule and software
complexity can be reduced by dealing with one engine only.
Both transaction engines are more commonly used in
high-throughput applications such as video or mass storage.

USB Host Operation
There are essentially eight parts to interacting with the
SL811HS during USB host operation. These parts include:
• Enabling interrupts
• Vbus-on and device attachment
• USB bus reset
• SOF/EOP generation
• USB transactions
• Errors
• USB bus suspend/resume
• Remote wake-up

Each of these items will be described in detail in the following
section.
1. Enabling Interrupts – Initially the “insert/remove” inter-

rupt should be enabled. This interrupt can be enabled by
writing to the Interrupt Enable register previously de-
scribed.

2. Vbus-on and device attachment – Power should be ap-
plied to the bus after the interrupts are enabled so that the
SL811HS will properly report the attachment of any periph-
eral devices. Device attachment is reported by the asser-
tion of INTRQ pin. The interrupt source can be read via the
Interrupt Status register. If the “insert/remove” interrupt is
asserted, the “device detect” bit should be polled. If “device
detect” is asserted (asserted = 0b), then a peripheral is
attached and the interrupt was more than likely not caused
by a peripheral power-on glitch. However, a safer method
to absolutely determine device attachment is to wait 5–10
ms before proceeding with device attachment processing.
Since the device attachment/detachment hardware in the
SL811HS is not de-bounced, multiple interrupts may occur
after the device tries to initially attach to the USB. Once the
device firmware has determined that a device is definitely
attached, the “D+” bit in the Interrupt Status register is used
to determine the speed of the attached peripheral. If “D+”
is asserted then the attached peripheral is a full-speed de-
vice. If “D+” is not asserted then the device is a low-speed
peripheral. USB operational speed is set with the “USB
speed” bit in the Control 1 register. If a device attach/de-
tach interrupt occurs and the “device detect” bit is deas-
serted, software should immediately consider the device
as detached.

3. USB bus reset – After a device is attached the host is
required to generate a USB bus reset. USB reset through
a hub is not discussed in this document, however more
information can be found in the USB specification. USB
bus reset is generated when the SL811HS drives both D+
and D– LOW for 50 ms or more. Bits 3 and 4 of the Control
1 register allow software to directly control the states of the
SL811HS D± pins and set both pins LOW. After 50 ms,
control of the D± pins should be returned to the SL811HS
SIE via the same control bits.

4. SOF/EOP generation – The SL811HS must wait at least
2.5 µs after USB bus reset deassertion before beginning
any transaction including “Start of Frame” (SOF) transac-
tions. During this “reset relaxation” time software should
set up the SOF counter high/low registers as described in
the previous section. After the reset relaxation period, SOF
generation can be started by writing to the “SOF en-
able/disable” bit in the Control 1 register. The “ARM” bit in
the USB-A Host Control register must also be set to enable
SOF generation.

5. USB transactions – Transactions should not be started
any sooner than 100 ms after the deassertion of USB bus
reset. Before performing any USB transactions, the
“USB-A” and “USB-B” interrupts (if B engine is used)
should be enabled in the Interrupt Enable register. Each
transaction will require software to set up to five register
values. These include the internal buffer memory address
(USB-A/B Host Base Address), the length of the transac-
tion (USB-A/B Host Base Length), the peripheral device
address (USB-A/B Host Device Address), the USB PID
and peripheral endpoint (USB-A Host PID, Device End-
2

Basic Embedded Host Using the SL811HS
point), and the transaction enable (USB-A/B Control). The
value of these registers should not be modified after the
transaction is enabled or before the transaction is com-
plete. Upon transaction completion, an interrupt will be sig-
naled to the controlling processor. At this time the USB-A/B
Status register should be read to determine any errors. The
USB-A/B Host Transfer Counter register should be read
as well to determine if the entire data packet was properly
sent.

6. Errors – Errors may occur during USB transactions; for
instance if a misbehaving device is attached, or a device
is detached in the middle of a transaction. Any error must
be dealt with in software on the controlling processor. How
a USB host stack should deal with specific errors is beyond
the scope of this document, however the USB specification
covers most error cases in detail.

7. USB bus suspend/resume – USB bus suspend essen-
tially entails shutting off SOF generation and not perform-
ing any more transactions until the USB is resumed. SOF
generation can be disabled in the Control 1 register using
the “SOF enable/disable” bit. A USB resume simply re-
quires that SOF generation be turned back on.

8. Remote Wake-up – Remote wake-up signaling can be
automatically detected and can cause an interrupt. Re-
sume detection should be enabled before the USB is put

into suspend. First, the “device detect/resume” bit in the
interrupt enable register is set in order to detect the resume
event. This interrupt enable bit should only be used to de-
tect resume signaling. This interrupt should not be set to
detect device insertion, as it will continuously interrupt dur-
ing USB traffic. After the USB resumes, this bit should be
de-asserted. The final step is to set the “suspend” bit in the
Control 1 register to enable resume signaling detection.

Endpoint 0 Control Transactions
This section provides state diagrams of USB host controller
transactions. A USB host may need to support up to three
types of transactions on endpoint 0. These transactions in-
clude Control-Read, No-Data Control, and Control-Write
transactions. Operations that require one or more register
writes are shown in bold. State change decisions are shown
with a question mark and can be determined by reading the
USB Status register and the USB Host Transfer Count regis-
ter. Upon any disconnect event during a transaction the flow
should automatically transition to the error handler. Non-con-
trol endpoint transactions, such as bulk, isochronous, or in-
terrupt are essentially simpler subsets of control transactions,
so their details are not covered in this document.

Init setup
(w/ data toggle 0, accepted

toggle = 1)
Error handler

(OS dependent)
NAK or STALL?

Init IN
NAK or toggle error? Error handler

(OS dependent)

Store Bytes
(& Change Accepted Data

Toggle)

More data or
max. packet size
received?

STALL or Overflow?

ACK?

ACK?

Init Status OUT
(w/ data toggle 1)

ACK?

NAK?

Done
(OS dependent)

Packet received and last
transaction was not max. packet
size? – or zero length packet
received?

1. Set transaction length
2. Set USB PID = IN
3. Set Host Control= ARM + Enable

1. Read received byte from internal
memory

1. Set transaction length= 0
2. Set USB PID = OUT
3. Set Host Control= ARM + Enable+ DIR

Error handler
(OS dependent)STALL?

1. Set buffer memory address and fill it
with the SETUP request

2. Set transaction length to 8 bytes
3. Set USB PID = SETUP
4. Set Endpoint = 0
5. Set device address
6. Enable USB-A/B interrupt
7. Set Host Control = ARM + Enable + DIR

Control-Read
3

Basic Embedded Host Using the SL811HS
USB Host Stack Support
Cypress supports a number of host stack implementations for
the SL811HS by providing a host controller driver. Supported
operating system stacks include VxWorks, WinCE, and
Linux. Cypress also offers a SL811HS development kit with
host firmware examples. Some implementations may be
available on the Cypress web site. Others not listed on the
web site are available from Cypress USB applications sup-
port upon request.

Conclusion
The SL811HS can be used as a versatile and full-featured
embedded USB host controller. The combination of a stan-
dard signaling interface and simple control registers allows
the SL811HS to be integrated with a small or large scale em-
bedded USB host stack. For further questions and assistance
please contact Cypress USB applications support.

All products and company names mentioned in this document may be the trademarks of their respective holders.
approved dsg 12/4/02

Init setup
(w/ data toggle 0, accepted

toggle = 1)

Init Status IN
(w/ data toggle 1) 1. Set transaction length= 0

2. Set USB PID = IN
3. Set Host Control= ARM + Enabl

Error handler
(OS dependent)

NAK or STALL?
ACK?

NAK or toggle error?

ACK?

Done
(OS dependent)

Error handler
(OS dependent)STALL or Overflow?

1. Set buffer memory address and fill it
with the SETUP request

2. Set transaction length to 8 bytes
3. Set USB PID = SETUP
4. Set Endpoint = 0
5. Set device address
6. Enable USB-A/B interrupt
7. Set Host Control = ARM + Enable + DIR

No-Data Control

Init setup
(w/ data toggle 0)

Error handler
(OS dependent)

NAK or STALL?

Init OUT
NAK? Error handler

(OS dependent)

Load Bytes
(& Change Data Toggle)

More data to
send?

STALL?

ACK?

ACK?

Init Status IN
(w/ data toggle 1)

ACK?

NAK or toggle error?

Done
(OS dependent)

All bytes sent?

1. Set transaction length
2. Set USB PID = OUT
3. Set Host Control= ARM + Enable+ DIR

1. Load transaction bytes into
internal memory

2. Set correct data toggle

1. Set transaction length= 0
2. Set USB PID = IN
3. Set Host Control= ARM + Enable

Error handler
(OS dependent)STALL?

1. Set buffer memory address and fill it
with the SETUP request

2. Set transaction length to 8 bytes
3. Set USB PID = SETUP
4. Set Endpoint = 0
5. Set device address
6. Enable USB-A/B interrupt
7. Set Host Control = ARM + Enable + DIR

Control Write
© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

